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Quantum diffusion on a cyclic one-dimensional lattice

A. C. de la Torre,* H. O. Mártin, and D. Goyeneche
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The quantum diffusion of a particle in an initially localized state on a cyclic lattice withN sites is studied.
Diffusion and reconstruction time are calculated. Strong differences are found for even or odd number of sites
and the limit N→` is studied. The predictions of the model could be tested with microtechnology and
nanotechnology devices.
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I. INTRODUCTION

The problem of a classical particle performing a rand
walk in various geometrical spaces@1# and the quantum ran
dom walk @2# have been thoroughly studied and compar
The classical and quantum cases have striking differen
One of these differences is that, whereas the classical sp
increases with time asAT, in the quantum case we have
stronger linear time dependence of the width of the distri
tion. This faster diffusion of the quantum random walk h
arisen interest in quantum computation because of the po
bility to develop algorithms more efficient than those bas
on the classical random walk. In the quantum mechan
case, we can identify two different causes for the spread
of the probability distribution describing the position of
particle. There is a spreading of the distribution caused
the random walk itself, also present in the classical case,
superposed to it, there is the quantum mechanical sprea
of the probability distribution due to the time evolution of
particle in a localized state. This second type of spreadin
the main interest of this contribution. For this study, we w
consider a quantum mechanical particle initially localized
one site of a one-dimensional cyclic lattice withN points. In
most treatments of quantum random walks in a lattice i
assumed that the number of sites,N, is large compared with
the number of jumps of the time evolution and therefore
system does not notice whether the lattice is infinite or
clic, that is, finite with periodic boundary conditions. In o
analysis we will not assume thatN is large and we will find
some peculiar and interesting features, for instance, a
different behavior for even or odd values ofN. These even-
odd differences also appear in quantum random walk
circles, although they are based on a dynamics comple
different from the one that we consider here. There are s
eral motivations, besides the general academic interest
allowing low values ofN. For instance, cyclic lattices with
few sites have been built with nanofabrication techniqu
and in quantum computers we deal with systems withN
52 ~qubits! or N53 ~qutrits!. In all these cases we may b
interested in the quantum diffusion time of an initially loca
ized state. The quantum behavior in the continuous casN
→` is also interesting because it could be experiment
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tested building small conducting rings with microfabricatio
techniques.

II. DEFINITION OF THE MODEL

In this work we will consider a particle moving in a one
dimensional periodic lattice withN sites and lattice constan
a represented in Fig. 1. The quantum mechanical treatm
@3# of this system requires anN-dimensional Hilbert space
H. The lattice sites will be labeled by an indexx running
through the values 0,1, . . . ,N21. We will adopt a very use-
ful notation for the principalNth root of the identity defined
by

v5ei (2p/N). ~1!

Integer powers of this quantity build a cyclic group with th
important property

15vNn,;n50,61,62, . . . . ~2!

The position of the particle in the lattice can take any va
~eigenvalue! a(x2 j ) where a has units of length,j 5(N
21)/2, and the integer numberx can take any value in the
set$0,1, . . . ,N21%. The eigenvalues have been chosen i
way that position can take positive or negative values in
interval@2a j ,a j #. Notice thatj is integer for oddN and half
odd integer ifN is even. The state of the particle in eac
position is represented by a Hilbert space elementwx and the

FIG. 1. Cyclic lattice withN sites characterized by a labelx
running fromx50 to x5N21 and lattice constanta. The position
observable corresponding to sitex has the eigenvaluea(x2 j ),
where j 5(N21)/2 and can take positive and negative values.
©2003 The American Physical Society03-1
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de la TORRE, MÁRTIN, AND GOYENECHE PHYSICAL REVIEW E68, 031103 ~2003!
set $wx% is a basis inH. In the spectral decomposition, w
can write the position operatorX as

X5 (
x50

N21

a~x2 j !wx^wx ,•&, ~3!

that clearly satisfiesXwx5a(x2 j )wx . Momentum is for-
malized in the Hilbert space by means of a basis$fp%, un-
biased to the position basis, wherep is an integer numbe
that can take any value in the set$0,1, . . . ,N21%. The mo-
mentum operator is given in terms of its spectral decom
sition as

P5 (
p50

N21

g~p2 j !fp^fp ,•&, ~4!

whereg is a constant with units of momentum. The eige
values ofP have been defined in a way to allow for mov
ment of the particle in both directions, counter clockwi
~positive eigenvalues! and clockwise~negative eigenvalues!
along the circular lattice. Notice however that the state
zero momentum is only possible whenN is odd. We will find
in this work that there are several important differences
the system whenN is even or odd. The position and mome
tum bases are related by a unitary transformation simila
the discrete fourier transform,

wx5
1

AN
(
p50

N21

v2(p2 j )(x2 j )2a(x2p) fp ~5!

and

fp5
1

AN
(
x50

N21

v (p2 j )(x2 j )1a(x2p) wx , ~6!

with

^wx ,fp&5
1

AN
v (p2 j )(x2 j )1a(x2p), ~7!

wherea is a parameter such that

a5H 0 for N odd

1

2
for N even.

~8!

The constantsa andg are not independent but are related

agN52p. ~9!

This condition follows@3# from the requirement that in th
limit N→` the commutation relation of position and m
mentum should be@X,P#→ i ~we adopt units such that\
51). Notice that for finite N, the commutation relation
@X,P#5 i is impossible.

All these definitions are compatible with the physical r
quirement that momentum is the generator of translation
position generates increase in momentum. That is,
03110
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e2 iaPwx5vaw [x11] ,

eigXfp5vaf [ p11] , ~10!

where the symbol@•# denotes modN, that is,@N#50. Note
that anN-fold application of these translation operators
equal to the identity1 if N is odd but is equal to21 if N is
even. This is reminiscent of a 2p rotation of a spin 1/2
system.

In Eqs.~5!–~7! we could absorb the phasesax andap in
the bases$wx% and$fp% by an appropriate phase transform
tion ~this is only relevant for evenN becauseaÞ0). How-
ever, this option would result in a complication of Eqs.~10!
where the phaseva would not appear but a sign chang
would appear in the translation from sitex5N21 to sitex
50 and also fromp5N21 to p50, losing thereby the
homogeneity of the lattice because not all lattice sites wo
be equivalent. Later in this work it will be convenient to tak
this option.

III. SPREADING OF A LOCALIZED STATE
AND DIFFUSION TIME

At any instant of time, the state of the particle will b
determined by a Hilbert space elementC(t) that in the po-
sition representation is given by the coefficientscx(t) such
that

C~ t !5 (
x50

N21

cx~ t !wx . ~11!

A given stateC(0) at an initial timet50 will evolve ac-
cording to the time evolution unitary operator given in term
of the HamiltonianH as

Ut5exp~2 iHt !. ~12!

In this work we are interested in the time evolution of a st
corresponding to a particle initially localized in a lattice s
~say, atx50) at rest, that is, witĥ P&50. Such a state is
given by C(0)5w0, that is,cx(0)5dx,0 . Let us assume a
free particle with HamiltonianH5P2/2m. With this Hamil-
tonian we can easily find that the state for any time will
given by

cx~T!5
1

N (
p50

N21

vx(p2 j 1a)2(p2 j )2T, ~13!

where we have introduced a dimensionless time param
T5t/t with a time scalet defined by

t5
2ma

g
, ~14!

which, as we will see later, corresponds essentially to
diffusion time. We have chosen the free particle Hamiltoni
however, many of the following results do not depend on
specific form of this Hamiltonian and are also valid for a
Hamiltonian invariant under the transformationP→2P.
During the time evolution of a particle, initially in the sit
3-2
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QUANTUM DIFFUSION ON A CYCLIC ONE- . . . PHYSICAL REVIEW E 68, 031103 ~2003!
x50, the expectation value of the position and moment
will remain zero, ^X&5^P&50 but, due to the quantum
spreading of the state, the probability distribution of the o
cupation of other lattice sites will grow. We will study som
features of this quantum diffusion. The probability of occ
pation of the lattice sitex at timeT is given by

ucx~T!u25
1

N2 (
p50

N21

(
q50

N21

v (p2q)x2(p2q)(p1q22 j )T. ~15!

One of the sums can be analytically performed after a cha
of the summation indices but it is not really convenient to
it.

Due to the periodicity of the lattice, we expect that t
amplitudes and probabilities of Eqs.~13! and ~15! will be
periodic in time. This is indeed the case but with differe
periodicity for N even or odd. That is, for the amplitude w
have

cx~T!5H cx~T1N! for N odd

cx~T14N! for N even,
~16!

and for the probability we get

ucx~T!u25H ucx~T1N!u2 for N odd

ucx~T1N/2!u2 for N even.
~17!

It is remarkable that the period of the amplitude is equa
the period of the probability forN odd, but it is eight times
longer if N is even. The periodicity shown in Eqs.~16! and
~17! correspond to our particular initial state but it follow
essentially from the Hamiltonian and the cyclic relation~2!,
and therefore this periodicity is also valid for arbitrary sta
and probabilities.

From the symmetry of the lattice and of the initial sta
we expect that the particle will diffuse with equal probabili
clockwise or counterclockwise, that is,ucN2x(T)u5ucx(T)u,
but for the amplitude we may have a different phase on b
sides of the initial position. We will now show that the am
plitude on lattice points symmetric with respect to the init
positionx50 is related by

cN2x~T!5v22axcx~T!. ~18!

In order to prove this, consider

cN2x~T!5
1

N (
p50

N21

vN(p2 j 1a)2x(p2 j 1a)2(p2 j )2T. ~19!

Using Eq.~2! we eliminateN(p2 j 1a) in the exponent and
addNx. Therefore

cN2x~T!5
1

N (
p50

N21

vx(N2p1 j 2a)2(p2 j )2T. ~20!

Now we define another summation indexq5N2p with val-
ues in$N,N21, . . . ,1%.
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cN2x~T!5
1

N (
q51

N

vx(q1 j 2a)2(N2q2 j )2T. ~21!

Since N52 j 11, the squared parenthesis in the expon
becomes (q212 j )2. Then

cN2x~T!5
vx(112 j 22a)

N (
q51

N

vx(q212 j 1a)2(q212 j )2T.

~22!

Finally, redefining the summation indexp5q21 and using
again Eq.~2!, we find that the right-hand side of this equ
tion is v22axcx(T). A remarkable consequence of relatio
~18! is that, for even N, a quantum particle in a localized
state will never diffuse to the antipode location.The antipode
location,x5N/2, exists only for evenN. The proof follows
from Eq. ~18! since we havecN2N/25v2N/2cN/2 , but
v2N/2521, thereforecN/252cN/2 . That is,

cN/2~T!50, ; T. ~23!

This is a remarkable result that can be checked by exp
evaluation from Eq.~13! redefining the summation indexq
5p2 j running from2 j to j. Doing this we obtain a sum
whose terms are antisymmetric underq→2q; therefore they
add to zero. Another physically appealing proof of this res
is provided by Feynman’s ‘‘sum over paths’’ method@4#. In
this case, a path contributing to the probability amplitude
the transition fromx50 at t i to x5N/2 at t f is defined by a
set $xk ;tk% for each partition of the time intervalt i,tk
,t f . It turns out that for each path$xk ;tk% going from x
50 to x5N/2 there is another path$zk ;tk%, symmetric with
respect tox50, that is,zk5N2xk but with the same values
of $tk%, that cancels its contribution to the probability amp
tude simply becausedzk52dxk . In the caseN52, besides
the initial location, there is only one remaining location, t
antipode. Therefore, for all time, the particle will remain
its initial position. Clearly, forN52 the statesw0 andw1 are
not only position eigenvectors but also eigenstates of
Hamiltonian and therefore they are stationary states. For
values ofN the antipode does not exist but we can study
transition probability to diffuse to the ‘‘farthest’’ location
x5(N61)/2. We will later see a remarkable difference
the odd-N case. We will see that, contrary to what happens
the even case in which the antipodes are never reached,N
is odd a sharp distribution will build up in an environment
the antipode at the timeT5N/2. This is precisely the time
when the state is reconstructed in theN-even case but at the
original site.

We will now calculate thediffusion time, that is, the time
that is required for a particle, initially localized in one lattic
site, to ‘‘diffuse’’ to the whole cyclic lattice. Since the state
periodic in time, with period proportional toN, we expect
that the state reconstruction happens after the whole lattic
visited and therefore the diffusion time should be, at mo
proportional toN. In order to calculate the diffusion time w
must find the time dependence of the width of the probabi
distribution of position. It turns out that for finiteN, or for
periodic distributions, the quantitieŝC(t),XC(t)& and
3-3
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de la TORRE, MÁRTIN, AND GOYENECHE PHYSICAL REVIEW E68, 031103 ~2003!
^C(t),X2C(t)&2^C(t),XC(t)&2 are not appropriate esti-

mates for the centerX̄ and widthD of the distribution along
a cyclic lattice or ring. The main reason why they are n
appropriate is that any physical quantity in a cyclic latti
should be periodic~that is, invariant underx→x1Na), and
clearly the quantitŷ C(t),XC(t)& does not comply to this
Two simple examples: first, let us suppose a distribut
given by ucN21u25uc0u25uc1u251/3. Clearly, the center o
the distribution is at the location corresponding to the la
x50, that is, at the position2a j52a(N21)/2, but the
quantity ^C(t),XC(t)& is (x50

N21a(x2 j )ucxu252a(N
23)/6. For another example, consider a uniform distribut
that fills a ring completely. In our case of a cyclic lattice w
haveucxu251/N, ;x. Clearly, this distributiondoes not have
a center; it should be undefined on the ring because
points are equivalent, but the quantity^C(t),XC(t)& is
(x50

N21a(x2 j )ucxu250.

The problem of defining the centerX̄ and widthD of a
distribution in a ring or cyclic lattice has been solved@5,6#
using the concept of thecentroidof a distribution on a ring.
Let us build a map of the ring into a unit circle in the com
plex plane. In order to define the centroidZ for a probability
distribution ucxu2 on the sitesx50,1, . . . ,N21 of a cyclic
lattice, let us consider the unit circle in the complex pla
with N points located atvx. The centroid of the distribution
is a complex numberZ5reiu given by

Z5reiu5 (
x50

N21

vxucxu2. ~24!

The radial projection of the centroid on the unit circle ma
the center of the distribution on the ring. Therefore,

X̄5aS u

2p
N2 j D , ~25!

and the widthD of the distribution is given by

D25~aN!2~12uZu2!, ~26!

where the factoraN has been chosen such that for a unifo
distribution covering the whole lattice (Z50) the width of
the distribution is equal to the size of the lattice. Note th
when only one site is occupied, the width is zero. The
definitions are clarified in an example shown in Fig. 2.

We can now study the time dependence of the width
our initial condition of a particle at rest, localized inx50.
Let us calculate first the centroid. From Eqs.~24! and ~15!
we obtain

Z5
1

N2 (
p50

N21

(
q50

N21

(
x50

N21

vxv (p2q)x2(p2q)(p1q22 j )T. ~27!

The sum overx can be performed:

(
x50

N21

v (p2q11)x5N~dq,p111dq,0dp,N21!. ~28!
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The first term inside the parentheses corresponds to the
ishing of the exponent ofv and the second term is for th
case where the exponent is equal toNx. With the Kronecker
d ’s we perform the sum overq, and the remaining sum ove
p has a known result. We then get

Z5
1

NS sinS 2p

N
~N21!TD

sinS 2p

N
TD 11D . ~29!

As expected, the centroid has the same time periodicity
the probability distribution, that is,N for odd number of
lattice sites andN/2 for an even number of sites. Due to th
initial condition of a particle in the sitex50 and to the
symmetric diffusion, the centroid is real at all times. T
study of the time dependence of the centroid, shown in F
3~a! and 3~b! for N516 and 17, allows a simple qualitativ
description of the time evolution of the distribution. In th
figures we notice that the centroid oscillates most of the ti
with values close to zero, corresponding to distributio
close to~but not necessarily equal to! uniform distributions
covering the whole lattice. At timeT5N/2 the centroid as-
sumes the value ofZ51 in the N-even case, as expecte
because at this time the initial state is reconstructed, and
odd N it takes the value2(N22)/N, close toZ521 for
largeN, implying that at the timeT5N/2 the distribution is
concentrated at the antipodes of the initial location; howev
precisely at the antipode there is no lattice site for oddN and
the state cannot be reconstructed in one location. We see
a sharp distinction in the behavior of diffusion in the ev
and odd case: the antipode is never reached in theN-even
case but the distribution peaks in the neighborhood of
antipode~at timeT5N/2) in theN-odd case.

With the knowledge of the centroid, we can now calcula
the time dependence of the width of the distribution. In p
ticular, we want to find thediffusion time TD , which we
define as the time when the width assumes its maximal va

FIG. 2. An example for the centroid of a distribution. The sym
bol % shows the position of the centroidZ5reiu for a distribution
where the filled dots have a constant occupation probability and

other sites are empty. The centerX̄ of the distribution is shown and
the widthD is proportional to the chordC shown.
3-4
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QUANTUM DIFFUSION ON A CYCLIC ONE- . . . PHYSICAL REVIEW E 68, 031103 ~2003!
aN for the first time. Notice that when the centroid vanish
the width assumes its maximal value. From Eq.~29! we see
that the centroid vanishes forT51 for all N, therefore the
width is maximal (aN) at T51. However, Eq.~29! has an-
other root for a timeT smaller than 1 whenN.4. Of course,
whenN52 the diffusion time is infinite because the partic
never diffuses out of the initial site. Summarizing, we ha

TD5H ` for N52

1 for N53

N

2~N22!
for N>4.

~30!

It might at first seem strange that the defined diffusion ti
decreasestowards a constant valueTD51/2 with anincreas-
ing number of sites,N, but we can see that this is to b
expected as a consequence of indeterminacy principle.
creasing the number of sites,N, with the same initial condi-
tion of a particle in one site is equivalent to a sharper loc
ization of the initial state. This implies a wider momentu
spread, responsible for a faster diffusion that decreases
diffusion time. The explicit time dependence of the width
the distribution is then given by

D5aAN22S sinS 2p

N
~N21!TD

sinS 2p

N
TD 11D 2

. ~31!

This quantity is zero atT50, grows with time, and takes th
maximal valueaN at T5TD ; then it oscillates with values

FIG. 3. Time dependence of the centroid for even~a! and odd
~b! number of sites. At timeN/2 the state is reconstructed at th
original site for evenN and is concentrated at the antipodes for o
N.
03110
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close to the maximal value except at timeT5N/2 when the
width becomes zero forN even or decreases toa(2AN21)
for odd N. At this time, which we callfirst reconstruction
time TR5N/2, the particle is reconstructed at the original s
(N even! or is concentrated near the antipode (N odd!. Note
that at this reconstruction timeTR the state is reconstructed
only if N is even whereas for oddN the probability distribu-
tion for the location of the particle peaks, but there is
exact reconstruction of the particle in one location of t
antipode. For very short timesT!TD , the system does no
notice the geometry of the cyclic lattice and the width gro
linearly with time with a diffusion speedincreasingwith the
lattice sizeN. Indeed, the first term in the Taylor expansio
of D is

D5a2pA 1
3 ~N21!~N22!T for T!TD . ~32!

We can now investigate whether the reconstruction o
localized state for the particle at timeTR5N/2 at the original
site (N even! or the concentration of the particle near th
antipodes (N odd! is affected by the parity of the initial state
The initial state considered above, a particle inone site, has
necessarily even parity. In order to be able to study also
effect of an odd parity initial state, we will consider an initi
state of a particle at rest,^P&50, in an even or odd super
position of two neighboring position eigenstates correspo
ing to the sitesx50 andx51:

C6~0!5~1/A2!~w06vaw1!. ~33!

With this initial state, we can calculate the time evolution
the centroid. However, the centroid will no longer be a re
number. It is therefore convenient to make a rotation of
centroid in the complex plane by an anglev21/2 in order to
obtain the real quantityZ̃6(T)5v21/2Z6(T), whereZ6(T)
is the centroid corresponding to the two initial statesC6(0).
This results in

Z̃6~T!5
1

NF cosS p

ND sinS p

N
~N21!2TD

sinS p

N
2TD

6

sinS p

N
~N21!~2T21! D

2sinS p

N
~2T21! D

6

sinS p

N
~N21!~2T11! D

2sinS p

N
~2T11! D 1cosS p

ND71G .

~34!

In Figs. 4~a! and 4~b! we see the time evolution of the~ro-
tated! centroid Z̃1(T) for an even initial stateC1(0) for
even and oddN. For a qualitative comparison with Fig. 1, w
3-5
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have takenN533 andN534 in order to have similar rela
tion between the size of the lattice and the number of site
the initial state. From this comparison it is clear that t
behavior is similar. At timeT5N/2, a localizedevenstate is
reconstructed at the original locations ifN is even or the
particle is localized at the antipodes ifN is odd. In Figs. 5~a!
and 5~b! we can see that this is also true when the initial st

FIG. 4. Time dependence of the~rotated! centroid for even~a!
and odd~b! number of sites for an initial even state occupying tw
neighboring sites. At timeN/2 the state is reconstructed at the orig
nal sites for evenN and is concentrated at the antipodes for oddN.

FIG. 5. Time dependence of the~rotated! centroid for even~a!
and odd~b! number of sites for an initial odd state occupying tw
neighboring sites. At timeN/2 the state is reconstructed at the orig
nal sites for evenN and is concentrated at the antipodes for oddN.
03110
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C2(0) is odd, but the effect is much blurred by rapid osci
lations of the centroid. Shortly before and after every rec
struction of the particle, it isalmostreconstructed but on the
opposite side of the lattice. For both even and odd pa
states, the initial value of the centroid,Z̃6(0)5cos(p/N), is
exactly recovered for evenN at timeT5N/2 ~this must be so
because the state is periodic! and for oddN the centroid
reaches the minimum valueZ̃6(N/2)52@(N22)cos(p/N)
62#/N. For large N this minimum value approache
2cos(p/N), corresponding to the occupation of two neig
boring sites at the antipodes.

IV. THE CONTINUOUS LIMIT

We have found that there are very strong differences
the behavior of the system whenN takes even or odd values
Of course, all these differences must be compatible with
continuous limit whenN→` where we cannot differentiate
between even or oddN. In this section we will investigate
this limit. First, we must redefine the indices of summati
in a symmetric way such that they can take positive a
negative values. Let

y5a~x2 j !P@2a j ,a j #,

q5g~p2 j !P@2g j ,g j #. ~35!

Anticipating that in the limitN→`, the position and mo-
mentum eigenfunctions will not be normalizable, we defi
these eigenfunctions in terms of the symmetric indices a

wy5
1

Aa
wx andfq5

1

Ag
fp . ~36!

If in the limit N→` we also takea→0 or g→0, then the
summations become integrals according to the scheme

(
y52a j

a j

a→E
2`

`

dy or (
q52g j

g j

g→E
2`

`

dq. ~37!

The limit N→` is constrained by the conditionNag
52p, and therefore we will consider three different limi
L1, L2, L3, which will correspond to three different phys
cal systems:

For L1

N→`, a→0, g→0,

yP@2`,`#, qP@2`,`#. ~38!

For L2

N→`, a→0, Na5L, g5
2p

L
,

yP@2L/2,L/2#, q5
2p

L
n,
3-6
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n5H 61/2,63/2, . . . , N even

0,61,62, . . . , N odd.
~39!

For L3

N→`, g→0, Ng5G, a5
2p

G
,

qP@2G/2,G/2#, y5
2p

G
n,

n5H 61/2,63/2, . . . , N even

0,61,62, . . . , N odd.
~40!

In the limit L1 both variablesy and q are continuous and
unbound whereas inL2 the variabley is bounded and con
tinuous butq is unbound and discrete; these properties
exchanged inL3.

In the limit L1, the physical system becomes a free p
ticle moving in a one-dimensional infinite space where po
tion and momentum observable can take continuous val
In the limit L2, the physical system is a free particle movi
in a ring of perimeterL. Position is continuous and take
values from2L/2 to L/2 whereas momentum is a discre
variable. We will later see that among the two choices for
number n, only the values 0,61,62, . . . are physically
meaningful. This system also corresponds to a particle
box with periodic boundary conditions. Finally, in the lim
L3, the physical system is a particle moving in a on
dimensional infinite lattice with lattice constanta52p/G
and continuous momentum restricted to the Brillouin zo
@2G/2,G/2#.

The striking differences in the behavior of the system
tween even and oddN appear in the time periodicity of th
state and probability, and in the first reconstruction time
the probability distribution. These differences involve a tim
scalet5Nt}Na/g52p/g2. In both limitsL1 andL3, this
time scale isinfinite, and therefore we should not worr
about whetherN is even or odd when taking the limitN
→`; however, in the limitL2 the time scale isfinite and
proportional toL2. In this last case we will see that the eve
N case is mathematically sound but does not correspon
any reasonable physical system.

It is convenient, in order to analyze theL1 andL2 limits,
to adopt the position representation of the eigenfuncti
where the momentum eigenvectors are given by Eqs.~7! and
~36! as

fq~y!5^wy ,fq&5
1

A2p
eiqy1 ia(gy2aq). ~41!

In the limit L1, wherea→0 andg→0, this eigenfunction
becomes

fq~y!5
1

A2p
eiqy, ~42!
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provided that, in the even-N case (a51/2), the values ofy
and q remain finite ~otherwise a minus sign can appea!.
Expanding the position eigenfunctions in the momentum
sis we obtain

wy8~y!5
1

2pE2`

`

dqeiq(y2y8)5d~y2y8!. ~43!

We obtain therefore the usual position and momentum eig
functions for a free particle moving in a line.

Let us now consider theL2 limit where we have two
possibilities: a50, n50,61,62, . . . and a51/2, n5
61/2,63/2, . . . . In thefirst case Eq.~41! results in

fq~y!5
1

A2p
eiy(2p/L)n, n50,61,62, . . . , ~44!

and in the second case, assumingm561/2,63/2, . . . , we
have

fq~y!5
1

A2p
eiy(2p/L)m1 i (1/2)(2p/L)y5

1

A2p
eiy(2p/L)[m11/2]

5
1

A2p
eiy(2p/L)n, n50,61,62, . . . . ~45!

Thereforebothcases lead to the same position representa
of the momentum eigenfunction. So far it would seem th
the even- and odd-N cases are identical in the limitN→`;
however, this is not so as we will see next. It turns out tha
the even-N case, whena51/2, the momentum operator i
the position representationis not given by the derivative op-
erator as usual. In order to prove this, consider the first eq
tion in Eq. ~10! written in terms of the symmetric variables
that is,

e2 iaP wy5ei (2p/N)aw [ y1a]5ei (2p/Na)aa w [ y1a] . ~46!

Applying the limit L2 we get,

~12 iaP!wy5S 11 i
2p

L
aa Dwy1a . ~47!

Therefore

P wy5 i lim
a→0

wy1a2wy

a
2

2p

L
a wy1a , ~48!

where we see that only in the odd-N case, wherea50, is the
momentum operator given by the derivative operator.

The inadequacy of evenN in the limit is more conve-
niently seen if we absorb the phaseeia(gy2aq) in the eigen-
functions as was mentioned at the end of Sec. II. In this c
the a-dependent phase in Eq.~41! would not appear and we
would have two different position representations of the m
mentum eigenfunctions given by
3-7
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fq
1~y!5

1

A2p
eiy(2p/L)(0,61,62, . . . ) for odd N,

fq
2~y!5

1

A2p
eiy

2p
L (61/2,63/2, . . . ) for even N.

The momentum eigenfunctionsfq
1(y) are the same as th

ones obtained before in Eq.~44! and the other ones,fq
2(y),

are mathematically sound but are inadequate for phys
systems because they are antisymmetric,fq

2(2L/2)5
2fq

2(L/2), and have period 2L, whereas all reasonabl
physical states for a particle in a ring are symmetric and h
space periodicityL.

As a further confirmation that theL2 limit corresponds
with the odd-N case, we will show that an initial state in
ring is reconstructed at the antipodes at the reconstruc
time tR5TRt5Nt/25mL2/(2p), as it happens in the cas
of finite but oddN. In order to prove this we assume a
arbitrary initial state expanded in terms of the moment
base

c~y,0!5(
q

cq fq~y!. ~49!

We apply the time evolution operator to this state, consid
ing that

e2 i (P2/2m)t fq~y!5e2 i (q2/2m)t fq~y!, ~50!

and using Eq.~44! we get

c~y,t !5
1

A2p
(

n50,61,62, . . .
cne2( i /2m)(2p/L)2n2t1 iy(2p/L)n.

~51!

Consider now this state at the reconstruction timetR
5mL2/(2p),

c~y,tR!5
1

A2p
(

n50,61,62, . . .
cn e2 ipn2

eiy(2p/L)n. ~52!

Now, since n2 and n have the same parity, it ise2 ipn2

5e2 ipn, and we get

c~y,tR!5
1

A2p
(

n50,61,62, . . .
cn ei [ y2(L/2)](2p/L)n. ~53!

Therefore

c~y,tR!5cS y2
L

2
,0D , ~54!

with the meaning that the state at the reconstruction timetR
is equal to the initial state, but shifted to the antipodey
2L/2.

Finally, theL3 limit is treated equal to theL2 case but in
terms of the momentum representation of the eigenfunctio
03110
al

e

n
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Similar arguments show that the even-N case leads, in the
limit, to unphysical situations.

V. ABSORPTION AND RADIATION IN A RING

In the preceding section we have seen that the state o
initially localized particle in a continuous ring will flip back
and forth between the original position and its antipode.
can then imagine that the particle is oscillating in the ri
with a frequency given byf 051/(2tR)5p/(mL2). How-
ever, this oscillation does not correspond to a smooth ro
tion along the ring because, between every reconstruc
event, the state is strongly distorted and therefore hig
Fourier components will also be present. Now if the parti
is electrically charged, there will be a charge transfer fro
the original position to the antipode and back, and theref
we can expect an emission of electromagnetic radiation w
the fundamental frequencyf 0 and the higher harmonic
2 f 0 ,3f 0 , . . . . An electron in a localized state is then e
pected to decay to a nonlocalized state with lower energy
emission of electromagnetic radiation.

For an electron in a conducting ring of (10–100)m of
perimeter, the radiation will be in the radio frequency regio
and therefore there are chances to observe experimen
this quantum effect at temperatures low enough such tha
coherence length of the electron should be comparable
the size of the ring. With an heuristic argument based on
uncertainty principle~a dangerous thing to do!, we can esti-
mate that the number of photons of frequencyf 0 emitted in
the transition from an initial state localized within a regionl
and a decayed state occupying the whole ringL is propor-
tional to (L/l)2. This number follows from the ratio be
tween the energy difference of the initial and final state a
the energy of the photons.

It may be quite difficult to put an electron in a localize
state in order to detect the radiation but it could be mu
easier to observe the opposite effect, that is, absorption
this case an electron in a state spread on the ring will
localized by the absorption of electromagnetic radiation.
order to observe this effect one could try to deposit on
plane, or perhaps immerse in a fluid, a large number of c
ducting rings. Such a material, whose dielectric proper
follow from a fundamental quantum mechanical effect, cou
find technological applications. Another possibility to o
serve this quantum effect could be presented by some
shaped molecules if their electronic structures could be
sonably modeled by a conducting ring. For molecules w
10–100 Å diameter, the radiation falls in the infrared regi
of the spectrum.

VI. CONCLUSION

In this work we have studied the diffusion of a quantu
mechanical particle, initially localized, in a ring withN sites.
This diffusion has qualitative features quite different fro
the diffusion of a particle performing a classical rando
walk. It is well known that in a classical random walk, th
width of the distribution grows likeAT, whereas quantum
mechanical diffusion grows initially proportional toT. Fur-
3-8
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thermore, we see in Eq.~32! that the speed of quantum di
fusion, for largeN, increases linearly with the size of th
lattice aN. This nonlocal effect is contrary to the classic
behavior and can be understood qualitatively as a co
quence of Heisenberg’s indeterminacy principle: if the init
state is a particle inone siteof the lattice, increasing the
number of sites is equivalent to a sharper localization rela
to the lattice size, and this results in a wider moment
spread, responsible for the increase in diffusion speed. S
the diffusion speed increases with the number of sitesN, it is
reasonable to expect that the time necessary to diffuse to
whole lattice will be constant, independent of the lattice si
This is indeed the result shown in Eq.~30! where we see
that, for largeN, the diffusion timeTD is constant. This is
again in contradiction with the behavior of the classical ra
dom walk where the covering time@7# ~the time it takes for a
random walk to visit all the lattice sites! for a cyclic lattice
increases quadratically withN @precisely,N(N21)/2].

Finally, we would like to relate our results with interestin
recent work on quantum random walk. It is remarkable t
even though these two studies are based on a compl
different dynamics, a free particle in our case and a quan
stochastic process in the other, there are striking qualita
similarities among them. Quantum random walks on gen
graphs do not converge to a stationary distribution but a l
iting time-average distribution can be found and several
teria for the speed of convergence, called mixing time, sa
m

h
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pling time, or filling time can be defined@8#. In all cases, it
turns out that the quantum random walk achieves a fa
covering of the space compared with the classical rand
walk, and this can be advantageous in the developmen
more efficient algorithms for quantum computing. In the p
ticular case of a quantum random walk on a circular latt
with N sites, controlled by a Hadamard dynamics, there
striking differences in the limiting distribution for even o
odd number of sites@9,10#, and this difference remains i
decoherence is included in the quantum system@11#. In our
work we have found that these two main features of
quantum random walk, faster covering and even-odd dif
ences, are also present in our system although we ha
completely different dynamics. Apparently, these two fe
tures respond to two essential features of all quantum
tems. The faster quantum covering appears to be a co
quence of the inherent nonlocality of quantum mechan
whereas the even-odd effect may be due to different inter
ence arrangements.
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