PHYSICAL REVIEW E 68, 031103 (2003
Quantum diffusion on a cyclic one-dimensional lattice
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The quantum diffusion of a particle in an initially localized state on a cyclic lattice Widlites is studied.
Diffusion and reconstruction time are calculated. Strong differences are found for even or odd number of sites
and the limitN—c is studied. The predictions of the model could be tested with microtechnology and
nanotechnology devices.
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[. INTRODUCTION tested building small conducting rings with microfabrication
techniques.
The problem of a classical particle performing a random
walk in various geometrical spacgk| and the quantum ran- Il. DEFINITION OF THE MODEL

dom walk[2] have been thoroughly studied and compared. ] . ] . o
The classical and quantum cases have striking differences, I this work we will consider a particle moving in a one-
One of these differences is that, whereas the classical spred§nensional periodic lattice with sites and lattice constant

increases with time agT, in the quantum case we have a a represented in Fig. 1. The quantum mechanical treatment

stronger linear time dependence of the width of the distribu-[s] of this system requires aN-dimensional Hilbert space

. . D ‘H. The lattice sites will be labeled by an indexrunning
tion. This faster diffusion of the quantum random walk hasthrough the values 0,1. . N—1. We will adopt a very use-

anisen Interest in q“ar?t“m computaulop because of the pos il notation for the principaNth root of the identity defined
bility to develop algorithms more efficient than those base y

on the classical random walk. In the quantum mechanical
case, we can identify two different causes for the spreading
of the probability distribution describing the position of a
particle. There is a spreading of the distribution caused bynieger powers of this quantity build a cyclic group with the
the random walk itself, also present in the classical case, anghportant property

superposed to it, there is the quantum mechanical spreading

of the probability distribution due to the time evolution of a 1= Vn=0+1+2,.... 2
particle in a localized state. This second type of spreading is

the main interest of this contribution. For this study, we will The position of the particle in the lattice can take any value
consider a quantum mechanical particle initially localized in(eigenvalug¢ a(x—j) where a has units of lengthj=(N

one site of a one-dimensional cyclic lattice withpoints. In —1)/2, and the integer numbercan take any value in the
most treatments of quantum random walks in a lattice it isset{0,1, ... N—1}. The eigenvalues have been chosen in a
assumed that the number of sitég,is large compared with way that position can take positive or negative values in the
the number of jumps of the time evolution and therefore thenterval[ —aj,aj]. Notice thaf is integer for oddN and half
system does not notice whether the lattice is infinite or cy-odd integer ifN is even. The state of the particle in each
clic, that is, finite with periodic boundary conditions. In our position is represented by a Hilbert space elemgrand the
analysis we will not assume thakis large and we will find

w:ei(Zﬂ'/N)' (1)

some peculiar and interesting features, for instance, a very * .
different behavior for even or odd values f These even- .

odd differences also appear in quantum random walk in X=2
circles, although they are based on a dynamics completely

different from the one that we consider here. There are sev- X=1

eral motivations, besides the general academic interest, for

allowing low values ofN. For instance, cyclic lattices with a

few sites have been built with nanofabrication techniques X=N-1

and in quantum computers we deal with systems with
=2 (qubit9 or N= 3 (qutrits). In all these cases we may be

interested in the quantum diffusion time of an initially local- .

ized state. The quantum behavior in the continuous dase *

—o s also interesting because it could be experimentally FiG. 1. Cyclic lattice withN sites characterized by a label
running fromx=0 tox=N-—1 and lattice constar&. The position
observable corresponding to silehas the eigenvalua(x—j),

*Email address: ditorre@mdp.edu.ar wherej=(N—1)/2 and can take positive and negative values.
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set{¢,} is a basis inH. In the spectral decomposition, we e“ap<px=w“<p[x+1],
can write the position operatot as ox
N-1 &9 bp=w Bpi1), (10)
X= 2 a(xX—j)ex(ex: ), (3)  where the symbdl- ] denotes mod\, that is,[N]=0. Note
x=0

that anN-fold application of these translation operators is
equal to the identityl if N is odd but is equal te-1 if N is
even. This is reminiscent of a7 rotation of a spin 1/2
system.

In Egs.(5)—(7) we could absorb the phases andap in
the base$o,} and{#,} by an appropriate phase transforma-
tion (this is only relevant for eve becausex+#0). How-

that clearly satisfieX¢o,=a(x—j)¢,. Momentum is for-
malized in the Hilbert space by means of a bgsfg}, un-
biased to the position basis, whepes an integer number
that can take any value in the 4&,1, ... N—1}. The mo-
mentum operator is given in terms of its spectral decompo:;

sition as ever, this option would result in a complication of E¢&0)
N-1 where the phas@“ would not appear but a sign change
pP= E g(p—1)¢p<¢p ), (4) would appear in the translation from site=N—1 to sitex
p=0 =0 and also fromp=N-1 to p=0, losing thereby the

homogeneity of the lattice because not all lattice sites would
be equivalent. Later in this work it will be convenient to take
this option.

whereg is a constant with units of momentum. The eigen-
values ofP have been defined in a way to allow for move-
ment of the particle in both directions, counter clockwise
(positive eigenvalugsand clockwise(negative eigenvalugs
along the circular lattice. Notice however that the state of
zero momentum is only possible whiiis odd. We will find

in this work that there are several important differences in At any instant of time, the state of the particle will be
the system whel is even or odd. The position and momen- determined by a Hilbert space elemek(t) that in the po-
tum bases are related by a Unitary transformation similar t@ition representation is given by the Coefficiem'&t) such

IIl. SPREADING OF A LOCALIZED STATE
AND DIFFUSION TIME

the discrete fourier transform, that
o N-1
:f S oy g V(t)= 3 cb)ex. (11
p=0 x=0
and A given state¥(0) at an initial timet=0 will evolve ac-

cording to the time evolution unitary operator given in terms

N—1 . .
p:i 2 D0 atp) ® of the HamiltonianH as
N x=0 U,=exp(—iHt). (12)
with In this work we are interested in the time evolution of a state
corresponding to a particle initially localized in a lattice site
(o, o) = iw(p—j)(x—j)+a(x—p) % (say, atx=0) at rest, that is, wit{P)=0. Such a state is
TN ’ given by ¥(0)= ¢q, that is,c,(0)=8,,. Let us assume a

free particle with Hamiltoniad = P2/2m. With this Hamil-

where« is a parameter such that tonian we can easily find that the state for any time will be
given by
0 for N odd
— 1 8 1 Nl . 2
“ 5 for N even. ® M=y pgo @XPTIT )= (P, (13

The constants andg are not independent but are related byWhere we have introduced a dimensionless time parameter
T=t/7 with atime scaler defined by

agN=2r. 9
2ma

This condition follows[3] from the requirement that in the [ T (14
limit N—c the commutation relation of position and mo-
mentum should béX,P]—i (we adopt units such that  which, as we will see later, corresponds essentially to the
=1). Notice that forfinite N, the commutation relation diffusion time. We have chosen the free particle Hamiltonian,
[X,P]=i is impossible. however, many of the following results do not depend on the

All these definitions are compatible with the physical re-specific form of this Hamiltonian and are also valid for any
guirement that momentum is the generator of translation antlamiltonian invariant under the transformatidh— — P.
position generates increase in momentum. That is, During the time evolution of a patrticle, initially in the site
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x=0, the expectation value of the position and momentum 1 N _ o

will remain zero, (X)=(P)=0 but, due to the quantum cn-(T) =y > Xtz =(N=a=DT (21)
spreading of the state, the probability distribution of the oc- g=1

cupation of other lattice sites will grow. We will study some
features of this quantum diffusion. The probability of occu-
pation of the lattice site at timeT is given by

Since N=2j+1, the squared parenthesis in the exponent
becomes §—1—j)2. Then

wX(1+2j—2a) N
— > @ 1mita-(@-1-)°T,
q=1

N—1 N-1

1 . Cn_x(T)=
|CX(T)|2:W pgo qu WP~ DX (P=a)(P+a-2)T (15 N=x

(22)

One of the sums can be analytically performed after a changginally, redefining the summation indgx=q—1 and using
of the summation indices but it is not really convenient to doagain Eq.(2), we find that the right-hand side of this equa-
it. tion is w 2¥c,(T). A remarkable consequence of relation
Due to the periodicity of the lattice, we expect that the(18) is that, for even N a quantum particle in a localized
amplitudes and probabilities of Eqél3) and (15) will be  state will never diffuse to the antipode locatidine antipode
periodic in time. This is indeed the case but with differentlocation,x=N/2, exists only for evemN. The proof follows
periodicity for N even or odd. That is, for the amplitude we from Eq. (18) since we havecy_y,=w “cy,, but

have o N2=—1, thereforecy,,= —Cyj,. That is,
[CX(T-F N) for N odd cne(T)=0, V  T. (23)
cy(T)= (16)
) Cx(T+4N) for N even, This is a remarkable result that can be checked by explicit
- evaluation from Eq(13) redefining the summation index
and for the probability we get =p—j running from—j to j. Doing this we obtain a sum
5 whose terms are antisymmetric under — q; therefore they
o ()= le(T+N)| for N odd a7 add to zero. Another physically appealing proof of this result
(M= lc(T+N/2)|? for N even. is provided by Feynman’s “sum over paths” methpd. In

this case, a path contributing to the probability amplitude for

It is remarkable that the period of the amplitude is equal tathe transition fronx=0 att; to x=N/2 att; is defined by a
the period of the probability foN odd, but it is eight times set {X;t,} for each partition of the time intervat <t
longer if N is even. The periodicity shown in Eqel6) and ~ <t;. It turns out that for each patfx,;t,} going fromx
(17) correspond to our particular initial state but it follows =0 tox=N/2 there is another patz,;t,}, symmetric with
essentially from the Hamiltonian and the cyclic relati@, respect tax=0, that is,z,=N—x, but with the same values
and therefore this periodicity is also valid for arbitrary statesof {t,}, that cancels its contribution to the probability ampli-
and probabilities. tude simply becauséz .= —dx,. In the caseN=2, besides

From the symmetry of the lattice and of the initial statethe initial location, there is only one remaining location, the
we expect that the particle will diffuse with equal probability antipode. Therefore, for all time, the particle will remain in
clockwise or counterclockwise, that iy _.(T)|=|c.(T)|, its initial position. Clearly, foN=2 the stateg, and¢, are
but for the amplitude we may have a different phase on bottmot only position eigenvectors but also eigenstates of the
sides of the initial position. We will now show that the am- Hamiltonian and therefore they are stationary states. For odd
plitude on lattice points symmetric with respect to the initial values ofN the antipode does not exist but we can study the

positionx=0 is related by transition probability to diffuse to the “farthest” locations
x=(N=*=1)/2. We will later see a remarkable difference in
Cnx(T) =0 2%y (T). (18  the oddN case. We will see that, contrary to what happens in
the even case in which the antipodes are never reachid, if
In order to prove this, consider is odd a sharp distribution will build up in an environment of

the antipode at the tim&=N/2. This is precisely the time
1 Nt ‘ ‘ L when the state is reconstructed in tkeeven case but at the
en-x(M=g > QNPT PTT(19)  griginal site.

P=0 We will now calculate thaiffusion time that is, the time
that is required for a particle, initially localized in one lattice
site, to “diffuse” to the whole cyclic lattice. Since the state is
periodic in time, with period proportional tbl, we expect

Using Eq.(2) we eliminateN(p—j + «) in the exponent and
addNx. Therefore

N-1 that the state reconstruction happens after the whole lattice is
T)= E 2 X(N=p+j—a)—(p—)°T 20 visited and therefore the diffusion time should be, at most,
CN—X( ) w . ( ) . . . .
N p=0 proportional toN. In order to calculate the diffusion time we
must find the time dependence of the width of the probability
Now we define another summation indgx N—p with val-  distribution of position. It turns out that for finitd, or for
ues in{N,N—1, ... 1. periodic distributions, the quantitie¢W¥ (t),XW¥(t)) and
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(W (), X2W(t))— (W (t),XW¥(t))? are not appropriate esti- Im

mates for the centeX and widthA of the distribution along

a cyclic lattice or ring. The main reason why they are not
appropriate is that any physical quantity in a cyclic lattice
should be periodicthat is, invariant undex—x+ Na), and
clearly the quantity W (t),XW¥(t)) does not comply to this.
Two simple examples: first, let us suppose a distribution
given by |cy_1|?=|col?=|c,|?=1/3. Clearly, the center of
the distribution is at the location corresponding to the label
x=0, that is, at the position-aj=—a(N—1)/2, but the
quantity (W(t),X¥ (1)) is =Nta(x—j)|c,?=—a(N
—3)/6. For another example, consider a uniform distribution
that fills a ring completely. In our case of a cyclic lattice we
have|c,|?=1/N, Vx. Clearly, this distributiordoes not have

a center; it should be undefined on the ring because all
F’ON'[‘tls are_ equg/alent, but the quantitgb (), XW(1)) is where the filled dots have a constant occupation probability and all
Zi=oa(x—j)le*=0. other sites are empty. The cenéiof the distribution is shown and

~ The problem of defining the centeét and widthA of @ the widthA is proportional to the chor@ shown.
distribution in a ring or cyclic lattice has been solve]6]

using the concept of theentroidof a distribution on a ring.  The first term inside the parentheses corresponds to the van-
Let us build a map of the ring into a unit circle in the_ COM- ishing of the exponent ob and the second term is for the
plex plane. In order to define the centrador a probability 556 where the exponent is equaNr. With the Kronecker

i 2 ey — _ : L
distribution |c,| on the sitesx=0,1,...N—=1 of a cyclic 55 e perform the sum ovar, and the remaining sum over
lattice, let us consider the unit circle in the complex planep has a known result. We then get

with N points located aw*. The centroid of the distribution
is a complex number = pe'? given by

Re

FIG. 2. An example for the centroid of a distribution. The sym-
bol ® shows the position of the centro= pe'? for a distribution

(2
N1 1 SN W(N—l)T
Z:pem: 2 wX|CX|2. (24) Z:N . (277 )
0 Silgl

+1 1. (29

N

The radial projection of the centroid on the unit circle maps . _ o
the center of the distribution on the ring. Therefore, As expected, the centroid has the same time periodicity as
the probability distribution, that isSN for odd number of

— 0 ] lattice sites andN/2 for an even number of sites. Due to the
X=a EN_J)’ (29 initial condition of a particle in the sitx=0 and to the
symmetric diffusion, the centroid is real at all times. The
and the widthA of the distribution is given by study of the time dependence of the centroid, shown in Figs.
3(a) and 3b) for N=16 and 17, allows a simple qualitative
A?=(aN)?%(1—1Z|?), (26)  description of the time evolution of the distribution. In the

figures we notice that the centroid oscillates most of the time
where the factoaN has been chosen such that for a uniformwith values close to zero, corresponding to distributions
distribution covering the whole latticeZ&0) the width of ~ close to(but not necessarily equal)tainiform distributions
the distribution is equal to the size of the lattice. Note thatcovering the whole lattice. At tim&=N/2 the centroid as-
when only one site is occupied, the width is zero. Thesesumes the value oZ=1 in the N-even case, as expected,

definitions are clarified in an example shown in Fig. 2. because at this time the initial state is reconstructed, and for
We can now study the time dependence of the width forodd N it takes the value-(N—2)/N, close toZ=-1 for
our initial condition of a particle at rest, localized ¥+ 0. large N, implying that at the timél' = N/2 the distribution is

Let us calculate first the centroid. From E@24) and (15) concentrated at the antipodes of the initial location; however,
we obtain precisely at the antipode there is no lattice site for bidahd

the state cannot be reconstructed in one location. We see here
g NZIN-1N-1 , a sharp distinction in the behavior of diffusion in the even

Z==2 X 2 o*o®P (G 0Crra=2)T (27)  and odd case: the antipode is never reached in\teen

2 &= — =
N® p=0 =0 x=0 case but the distribution peaks in the neighborhood of the

antipode(at time T=N/2) in theN-odd case.

The sum ovex can be performed: With the knowledge of the centroid, we can now calculate

N—1 the time dependence of the width of the distribution. In par-
(P=a+1X=N(§ 188 28 ticular, we want to find theliffusion time |, which we
w —1).
x§=:0 (Pq.p+1+ Oq.0%pn-1) 8 define as the time when the width assumes its maximal value
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Z - close to the maximal value except at tifie=N/2 when the

width becomes zero foX even or decreases &(2\N—1)

for odd N. At this time, which we calffirst reconstruction

time Ty=N/2, the particle is reconstructed at the original site

01 T (N even or is concentrated near the antipod¢ ¢dd). Note

5 10 ! that at this reconstruction timgg the stateis reconstructed
only if N is even whereas for odd the probability distribu-
tion for the location of the particle peaks, but there is no

-1 N=16 exact reconstruction of the particle in one location of the
(@) antipode. For very short timeB<Tp, the system does not
Z notice the geometry of the cyclic lattice and the width grows

linearly with time with a diffusion speethcreasingwith the
lattice sizeN. Indeed, the first term in the Taylor expansion
of A is

0 T
5 0 15 A=a2m\3(N—1)(N=2)T for T<Tp. (32

We can now investigate whether the reconstruction of a
1. localized state for the particle at tinfgg=N/2 at the original
N=17 site (N even or the concentration of the particle near the
(b) antipodes N odd) is affected by the parity of the initial state.
The initial state considered above, a particleome site has
necessarily even parity. In order to be able to study also the
effect of an odd parity initial state, we will consider an initial
state of a particle at restP)=0, in an even or odd super-
position of two neighboring position eigenstates correspond-

FIG. 3. Time dependence of the centroid for e¥anand odd
(b) number of sites. At timeN/2 the state is reconstructed at the
original site for everN and is concentrated at the antipodes for odd
N.

aN for the first time. Notice that when the centroid vanishes,Ing to the sitesx=0 andx=1:
the width assumes its maximal value. From Ezf) we see _ Y«
that the centroid vanishes far=1 for all N, therefore the V.(0)=(1N2)(go* 0”¢y). (33

width is maximal @N) at T=1. However, Eq(29) has an-  \wjth this initial state, we can calculate the time evolution of
other root for a timel' smaller than 1 wheN>4. Of course,  the centroid. However, the centroid will no longer be a real

whenN=2 the diffusion time is infinite because the particle nymper. It is therefore convenient to make a rotation of the
never diffuses out of the initial site. Summarizing, we have cantroid in the complex plane by an ang}e‘l’z in order to

o for N=2 obtain the real quantity. (T) =~ Y22 (T), whereZ_. (T)
1 for N3 is the centroid corresponding to the two initial stafes(0).
or N= i i
Tp= (30 This results in
for N=4. T

2(N—2) (N—l)ZT)

sin{ —

-~ 1 T ( N

) . ' e . Z.(T)=—| cog =

It might at first seem strange that the defined diffusion time N N A w
decreasesowards a constant valulg, = 1/2 with anincreas- sin NZT
ing number of sitesN, but we can see that this is to be

expected as a consequence of indeterminacy principle. In- T
creasing the number of sitel, with the same initial condi- sin N(N—l)(ZT—l)
tion of a particle in one site is equivalent to a sharper local- +
ization of the initial state. This implies a wider momentum 25i,-<z(2-|-_1))
spread, responsible for a faster diffusion that decreases the N
diffusion time. The explicit time dependence of the width of
. . . . . o
the distribution is then given by sin(N(N—l)(2T+ 1)
a
" T\ _
2 5 * N +cos( N) +1
sinf—(N—-1)T 2sin —=(2T+1)
N N
A=a N?— +1] . (31
(2w ) (34)
sin WT

In Figs. 4a) and 4b) we see the time evolution of thgo-

This quantity is zero at =0, grows with time, and takes the tated centroidZ. (T) for an even initial stateV’, (0) for
maximal valueaN at T=Tp; then it oscillates with values even and oddN. For a qualitative comparison with Fig. 1, we
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FIG. 4. Time dependence of th{eotated centroid for even(a)
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¥ _(0) is odd but the effect is much blurred by rapid oscil-
lations of the centroid. Shortly before and after every recon-
struction of the particle, it imlmostreconstructed but on the
opposite side of the lattice. For both even and odd parity

states, the initial value of the centroid, (0)= cos(/N), is
exactly recovered for eveN at timeT = N/2 (this must be so
because the state is periodiand for oddN the centroid

reaches the minimum valug. (N/2)= —[(N— 2)cosr/N)
+2]/N. For large N this minimum value approaches
—cos(@@/N), corresponding to the occupation of two neigh-
boring sites at the antipodes.

IV. THE CONTINUOUS LIMIT

We have found that there are very strong differences in
the behavior of the system whéhtakes even or odd values.
Of course, all these differences must be compatible with the
continuous limit wherN—c where we cannot differentiate
between even or oddl. In this section we will investigate
this limit. First, we must redefine the indices of summation

and odd(b) number of sites for an initial even state occupying two in @ symmetric way such that they can take positive and

neighboring sites. At tim&l/2 the state is reconstructed at the origi-
nal sites for evemN and is concentrated at the antipodes for ddd

have takerN=33 andN=234 in order to have similar rela-

tion between the size of the lattice and the number of sites of

negative values. Let
y=a(x—j)e[—aj.ajl,

g=9(p—j)e[—gj.gjl. (35

the initial state. From this comparison it is clear that the

behavior is similar. At timel =N/2, a localizedevenstate is
reconstructed at the original locationsNfis even or the
particle is localized at the antipodesNfis odd. In Figs. £a)

Anticipating that in the limitN—o, the position and mo-
mentum eigenfunctions will not be normalizable, we define
these eigenfunctions in terms of the symmetric indices as

and 5b) we can see that this is also true when the initial state

b4

-1-

N=34. ODD STATE y _
(a)

—
=
-
>
<
3
P
o
b
b
P>
-
>
=
—

0 AAAAAAAA FYYY)

[IPAAAAN

b
-
-

-
G

v

-«J
-

N=33. ODD STATE y _
(b)

FIG. 5. Time dependence of theotated centroid for even(a)
and odd(b) number of sites for an initial odd state occupying two
neighboring sites. At tim&l/2 the state is reconstructed at the origi-
nal sites for evemN and is concentrated at the antipodes for ddd

1 1
(Py:ﬁ(Px and ¢q:\/_§¢p- (36)

If in the limit N—«~ we also takea—0 or g—0, then the
summations become integrals according to the scheme

aj

> a-

y="aj

gj
> g— (37

dg.
9=—gj —o

dy or

The limit N—oo is constrained by the conditioNag
=2, and therefore we will consider three different limits
L1, L2, L3, which will correspond to three different physi-

cal systems:
ForL1
N—o, a—0, g—0,
ye[—»,2], ge[—,]. (38)
ForL2

2
N—w>, a—0, Na=L, QZT,

2
ye[—L/I2L/2], g= —mn
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+1/2+3/2,..., N even provided that, in the eveN-case @=1/2), the values of
N=1g+1+2 N odd (39  and g remain finite (otherwise a minus sign can appear
T ' Expanding the position eigenfunctions in the momentum ba-
sis we obtain
ForL3
2 L[ jaly-y") '
N—o, g—0, Ng=G, a:E’ (Py’(Y):EJLxdqé =ao(y=y'). (43
o We obtain therefore the usual position and momentum eigen-
qe[—G/2,G/2], y=—n, functions for a free particle moving in a line.
G Let us now consider th&?2 limit where we have two
possibilities: «=0,n=0,=1,=2,... and a=1/2,n=
. *£1/2,+3/2,..., N even 40 +1/2,+3/2, . ... In thefirst case Eq(41) results in
~10+1,+2,..., N odd.
_ i al _
In the limit L1 both variablesy and g are continuous and ¢q(y)——\/ﬂe'Y(2 bUnn=0+1%2,..., (44
unbound whereas ih?2 the variabley is bounded and con-
tinuous butq is unbound and discrete; these properties are, 4 in the second case, assuming +1/2.+3/2, . .., we

exchanged in.3. have
In the limit L1, the physical system becomes a free par-

ticle moving in a one-dimensional infinite space where posi-

tion and momentum observable can take continuous values.d) (y)= Leiy(zm)mi(1/2)(2w/L)y=Leiy(zqﬁu[mﬂlz]

In the limit L2, the physical system is a free particle moving " ¢ N N

in a ring of perimeter_. Position is continuous and takes

values from—L/2 to L/2 whereas momentum is a discrete 1 TN .

variable. We will later see that among the two choices for the _\/T—We ,n=0%12x2,.... (45)

number n, only the values @;1,£2,... arephysically

meaningful. This system also corresponds to a particle in

box with periodic boundary conditions. Finally, in the limit

L3, the physical system is a particle moving in a one-

dimensional infinite lattice with lattice constaat=27w/G

and continuous momentum restricted to the Brillouin zon

[—G/2,G/2].

Fhereforebothcases lead to the same position representation
of the momentum eigenfunction. So far it would seem that
the even- and oddlt cases are identical in the limN—oo;
however, this is not so as we will see next. It turns out that in
%he everN case, whemy=1/2, the momentum operator in

- . . . the position representatids notgiven by the derivative op-
The striking differences in the behavior of the system be, 4 a5 usual. In order to prove this, consider the first equa-

tween even and (.D.dM appear in the time perlodlqty qf the tion in Eq. (10) written in terms of the symmetric variables,
state and probability, and in the first reconstruction time for.

the probability distribution. These differences involve a timethat 'S
scalet=NrxNa/g=2m/g?. In both limitsL1 andL3, this e iaP o —i(27/N)a
time scale isinfinite, and therefore we should not worry Py ¢
about whethem is even or odd when taking the limN
—o; however, in the limitL2 the time scale iginite and
proportional toL?. In this last case we will see that the even-
N case is mathematically sound but does not correspond to (1-iaP)g,=
any reasonable physical system.

It is convenient, in order to analyze thd andL2 limits,
to adopt the position representation of the eigenfunctiond nerefore
where the momentum eigenvectors are given by Esand

[y+a]:ei(2w/Na)aa ()D[y+a] ) (46)

Applying the limit L2 we get,

2
1+i—aa

L (Py+a- (47)

(36) as . Py+a Py 2w
om0
= —___ giaytia(gy-aq)
$q(¥)=(@y, bq) /_2779 : (42) where we see that only in the oddlcase, wheree=0, is the

momentum operator given by the derivative operator.

The inadequacy of eveN in the limit is more conve-
niently seen if we absorb the phagé(9Y~29 in the eigen-
functions as was mentioned at the end of Sec. Il. In this case
1 the a-dependent phase in EGi1) would not appear and we

—_—_glay would have two different position representations of the mo-
bq(y) e, (42) . . :
V2 mentum eigenfunctions given by

In the limit L1, wherea—0 andg—0, this eigenfunction
becomes
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Similar arguments show that the evlnease leads, in the

1
ba(y)= \/?e'y(z’f“-)(ovﬂ'ﬂ' +-+) for odd N, limit, to unphysical situations.
ar
1 o V. ABSORPTION AND RADIATION IN A RING
20 iy 2 (12,2302, ... _ _
bq(y) 5 ¢ - for even N. In the preceding section we have seen that the state of an

initially localized particle in a continuous ring will flip back
The momentum eigenfunctionﬁé(y) are the same as the and forth between the original position and its antipode. We

ones obtained before in E¢i4) and the other Onesbg(y). can then imagine that the particle is oscillating in the ring

. - _ _ 2
are mathematically sound but are inadequate for physicalith @ frequency given byfo=1/(2tg) = m/(mL). How-
systems because they are antisymmetrjﬁ%(—L/Z)= ever, this oscillation does not correspond to a smooth rota-

—¢§(L/2), and have period 12, whereas all reasonable tion along the ring because, between every reconstruction

hveical states for a particle in a ring are symmetric and havevent, the state is strongly distorted and therefore higher
pny N P 9 y Fourier components will also be present. Now if the particle
space periodicity..

i . . is electrically charged, there will be a charge transfer from
witﬁsthae fg(;?Nerc(;Zr;flrvT:t\llvoiﬂ ;Eitwtr'zﬁst Iellrr?l'i[n(i:t(i)azlristg?en?nsa the original position to the antipode and back, and therefore
ring is reconstructe(’j at the antipodes at the reconstructioﬁ]e can expect an emission of electromagnetic radiation with
time ty=Txr=N7/2=mL2/(27), as it happens in the case e fundamental frequency, and the higher harmonics

of finite but oddN. In order to prove this we assume an 2f0,3fo, .. .. An electron in a localized state is then ex-

arbitrary initial state expanded in terms of the momentur’ ec_tec_;l to dfeclay toa nonlo_c ahzg_d §tate with lower energy by
base emission of electromagnetic radiation.

For an electron in a conducting ring of (10—1p0pf
perimeter, the radiation will be in the radio frequency region,
w(y,0)=2 Cq Pq(Y)- (49 and therefore there are chances to observe experimentally
q this quantum effect at temperatures low enough such that the
We apply the time evolution operator to this state, considerfz()he.rence Iengyh of the eIectron. should be comparable with
ing that the size of the_ ring. With an heunstu; argument based on the
uncertainty principlga dangerous thing to dlowe can esti-
—i(P22m)t _ _—i(q?2m)t mate that the number of photons of frequerigyemitted in
e T gly) =€ TED go(y), 0 the transition from an initial state localized within a region
and using Eq(44) we get and a decayed state occupying the whole ting propor-
tional to (L/\)2. This number follows from the ratio be-
tween the energy difference of the initial and final state and
the energy of the photons.
It may be quite difficult to put an electron in a localized
(52) state in order to detect the radiation but it could be much
easier to observe the opposite effect, that is, absorption. In

c ef(i/2m)(27r/L)2n2t+iy(271-/L)n
n .

1
l/’(y!t) = E n:O’i;’tZ, .

Consider now this state at the reconstruction tire

—ml2 this case an electron in a state spread on the ring will get
=mLe/(27), ) . . 2

localized by the absorption of electromagnetic radiation. In

1 o order to observe this effect one could try to deposit on a

Py, tR) = — c,e '™ ey@mLn (52)  plane, or perhaps immerse in a fluid, a large number of con-

V2 n=0=122,... ducting rings. Such a material, whose dielectric properties

~,  follow from a fundamental quantum mechanical effect, could
Now, sincen? and n have the same parity, it i8"'™  find technological applications. Another possibility to ob-
=e '™, and we get serve this quantum effect could be presented by some ring
shaped molecules if their electronic structures could be rea-
sonably modeled by a conducting ring. For molecules with
10-100 A diameter, the radiation falls in the infrared region
of the spectrum.

Py, tg) = —1 c, e'ly-(lEmbn (53
29 n=0,£1,%2, ...

Therefore

VI. CONCLUSION

Wy tr)=

y= §’0>’ (54) In this work we have studied the diffusion of a quantum
mechanical particle, initially localized, in a ring witt sites.
with the meaning that the state at the reconstruction tigne This diffusion has qualitative features quite different from
is equal to the initial state, but shifted to the antipode the diffusion of a particle performing a classical random
—L/2. walk. It is well known that in a classical random walk, the
Finally, theL 3 limit is treated equal to the2 case butin  width of the distribution grows like/T, whereas quantum
terms of the momentum representation of the eigenfunctionsnechanical diffusion grows initially proportional t& Fur-
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thermore, we see in E¢32) that the speed of quantum dif- pling time, or filling time can be definel@]. In all cases, it
fusion, for largeN, increases linearly with the size of the turns out that the quantum random walk achieves a faster
lattice aN. This nonlocal effect is contrary to the classical covering of the space compared with the classical random
behavior and can be understood qualitatively as a conse&valk, and this can be advantageous in the development of
quence of Heisenberg’s indeterminacy principle: if the initial more efficient algorithms for quantum computing. In the par-
state is a particle irone siteof the lattice, increasing the tjcular case of a quantum random walk on a circular lattice
number of sites is equivalent to a sharper localization relativgyith N sites, controlled by a Hadamard dynamics, there are
to the lattice size, and this results in a wider momentunktriking differences in the limiting distribution for even or
spread, responsible for the increase in diffusion speed. SinGgyd number of site$9,10], and this difference remains if
the diffusion speed increases with the number of Siteisis  decoherence is included in the quantum sysfétj. In our
reasonable to expect that the time necessary to diffuse to theork we have found that these two main features of the
whole lattice will be constant, independent of the lattice Sizequantum random walk, faster Covering and even-odd differ-
This is indeed the result shown in E€0) where we see ences, are also present in our system although we have a
that, for largeN, the diffusion timeTD is constant. This is Comp|ete|y different dynamics. Apparenﬂy' these two fea-
again in contradiction with the behavior of the classical rantyres respond to two essential features of all guantum sys-
dom walk where the Covering tln[é] (the time it takes for a tems. The faster quantum Covering appears to be a conse-
random walk to visit all the lattice sitg$or a CYC"C lattice guence of the inherent n0n|oca|ity of guantum mechanics

increases quadratically witN [precisely,N(N—1)/2]. ~  whereas the even-odd effect may be due to different interfer-
Finally, we would like to relate our results with interesting ence arrangements.

recent work on quantum random walk. It is remarkable that
even though these two studies are based on a completely
different dynamics, a free particle in our case and a quantum
stochastic process in the other, there are striking qualitative
similarities among them. Quantum random walks on general This work received partial support from the “Consejo Na-
graphs do not converge to a stationary distribution but a limcional de Investigaciones Ciéfitas y Tenicas”
iting time-average distribution can be found and several cri{CONICET) and from the ANPCyT(Grant No. 03-0843]]
teria for the speed of convergence, called mixing time, samArgentina.
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